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Abstract— The design of subharmonic mixers is complicated
and involves separation of signals and application of correct
loading at the important idler frequencies. In this paper we
present a novel general approach, which enables the designer to
establish the optimum loading conditions for the different signals
to get low conversion loss and good matching simultaneously. The
method is demonstrated by a design example using a 30 GHz X2
subharmonic mixer. In this example it is shown that a nonoptimal
design can yield conversion loss of up to 13.5 db, while an optimal
design yields a conversion loss of 3.6 db.

I. INTRODUCTION

UBHARMONIC (SH) mixers are very useful at millimeter
S wave frequencies since low frequency low cost microwave
sources can be used as the local oscillator (LO). Several
authors have demonstrated good performance SH mixers at
millimeter wave frequencies ([1]-{7]). In a SH mixer the mix-
ing action is performed between the radio frequency (RF) or
intermediate frequency (IF) signals and one of the harmonics
of the LO. Thus, the nonlinear device (diode, metal semicon-
ductor field effect transistor [MESFET], etc.) performs both
mixing and frequency multiplication. Usually, the conversion
loss of SH mixers is higher than fundamental mixers, however
careful design can yield comparable performance. SH mixers
are very sensitive to the loading of the nonlinear device at the
various idler frequencies. At the LLO, RF, and IF the device
has a resistive load, but at all other frequencies generated in
the nonlinear device it should be loaded by reactive load to
avoid power loss, which increases the conversion loss of the
mixer. However, this condition, while being necessary, is not
sufficient, and the mixer performance is strongly dependent
on the nature of the reactive load (short, open, capacitive
or inductive). In this paper we present a generic method to
determine the reactive loading of the various idler signals,
which yields optimal performance of the SH mixer, namely,
low conversion loss and good matching at the IF, LO, and
RF ports.

II. THE NEW APPROACH

A generic circuit of a Schottky diode based SH mixer is
depicted in Fig. 1. The mixer incorporates an anti-parallel
diode pair and three ideal two-port networks, one for each
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Fig. 1. A generic circuit of a subharmonic mixer.

output port (RF, LO, IF). The ideal two-port networks are
presented by S parameter matrices as follows (port 1 of each
network is adjacent to the diode pair);

1) LO network—at the LO frequency: s1;7 = 892 =
0,s91 = s;2 = 1; at all other frequencies: s1; =
S92 = 1, 891 = s12 = 0 (see explanation below);

2) IF network—at the IF frequency: s;1 = s9p = 0,
S91 = s12 = 1; at all other frequencies: s11 = 829 = 1,
s91 = $12 = 0 (see explanation below);

3) RF network—at the RF frequency: 813 = 822 = 0,
S91 = s19 = 1; at all other frequencies: s2; = 812 = 0,
|s11] = s22 = 1 (sy;—variable angle).

At the idler frequencies it is enough to vary the angle ofs
of the RF network alone while keeping the angle of s1; of the
other networks at zero (namely, open circuit), since all three
networks are in parallel to the diode pair.

These ideal networks supply the necessary conditions for
operation of the SH mixer. The optimization is performed on
the angle of s11 of the RF network at the idler frequencies,
which sets the reactive loading condition. For mixer operating
under small signal conditions and utilizing an ideal anti-
parallel diode pair (odd nonlinearity) the signals which are
considered in the analysis (in addition to the LO) are of the
form: f = nfrLo * fir, where n is an even number. Thus, the
angle of s;; of the RF network at the above frequencies should
be optimized. It is important to note that if the two diodes are
not identical, the unbalancing causes circulating currents, and
in that case ali the harmonics should be considered. However,
if one uses a monolithic diode pair, this effect is minimized.
In this paper we did not consider the effect of unbalancing,
however, this effect can be taken into account following the
same approach as outlined here.

We have implemented the design approach by use of HAR-
MONICA PC and LINMIC + /N, however any harmonic
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Ka band SH mixer conversion loss vs. phase of $11 of load
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Fig. 2. Conversion loss versus phase angle of s11.

balance simulator can be used. The following procedure en-
sures an optimal design of the SH mixer.

1) Enter the circuit in Fig. 1 into an harmonic balance
simulator.

2) Represent the three ideal networks by ideal S parameter
matrices as outlined above.

3) Simulate the circuit and calculate performance with the
phase of s1; of the RF network at the idler frequencies
varying over 0° to 360°.

4) Plot curves of the performance versus the phase angles.

5) Determine the optimum values of the phase angles and
express the result as the optimum loading to be presented
to the diodes at the various idlers.

6) Design a practical circuit, which approximates as best
as possible the above requirements.

7) Simulate the practical circuit and verify the actual per-
formance.

Usually it is very difficult to realize the optimum conditions
simultaneously at all the idler frequencies in a practical circuit,
however, the optimal conditions serve as design guidelines for
the actual circuit. The dependence of the performance on the
reactive loading at the idlers is quite strong, however, it is not a
sharp optimum, and variations around the optimum do not have
strong effect on the performance. This enables “near optimum”
design even if there are deviations from optimum angle values
in the practical circuit. In addition, the practical circuit has
losses, which are not simulated in the generic design, however,
these losses can be simulated for the actual circuit.

III. DESIGN EXAMPLE

We have implemented the above approach to aid in the
design of a millimeter wave SH mixer operating as an up
converter. The mixer is intended for use in the 30 GHz satellite
communication band (27.5-31 GHz). The mixer converts the
IF band of 4.5-8 GHz into the above mentioned RF band. The
LO frequency is 11.5 GHz. The generic approach was imple-
mented for the center frequencies, namely, an IF frequency of
6.25 GHz and an RF frequency of 29.25 GHz (2 fLo + fir). The

harmonic balance analysis considers up to four LO harmonics,
and thus there are three important idler signals: the image at
16.75 GHz (2fLo — fir) and the two sidebands around the
fourth LO harmonic-39.75 GHz (4 Lo — fr1) and 52.25 GHz
(4fvo + fir). There are commercial anti-parallel diode pairs
suitable for this application (MA/COM-MA40422, Philips
CAY18M/AB). In the simulation we assumed a junction
capacitance of 0.04 pF and a series resistance of 4() for each
diode.

For this example, we followed the procedure outlined above.
The results are depicted in Figs. 2 and 3. In Fig. 2 the
conversion loss and in Fig. 3 the IF return loss are depicted
versus the phase angle of s;1 of the RF network (for each plot
the phase angle at the other idlers is zero). From these curves it
is obvious that the worst performance occurs for angles around
180°, namely, an effective short circuit, which maximizes the
idlers currents via the diode pair (power loss). The largest
sensitivity is at the image—the conversion loss varies from
an optimum of 5 db at an angle of 0° to a maximum of 13.5
db at an angle of 180°. At the other idlers the sensitivity
is smaller but still appreciable. The optimum performance is
achieved for 0° at the image, 90° at 4 fLo — fir and 135° at
4fro + fir. For these values the conversion loss is 3.6 db and
the IF return loss is 22 db. These are extremely good results
for this type of mixer, and we do not expect to achieve them in
the practical circuit, however, this result can serve as a limit.
In this particular example the RF and IF bandwidths are very
large, and we do not expect to be able to design and build an
optimal circuit over the entire bandwidth. Our approach was
to design practical circuits, which present to the diode pair
impedances as close as possible to the optimum derived for
the ideal generic circuit.

The printed circuit pattern of the final design, which was
implemented is depicted in Fig. 4. The circuit was printed on
a 10 mil duroid substrate, and we used the Philips monolithic
diode pair (CAY18M/AB). The simulated performance of the
mixer using HARMONICA PC shows a conversion loss of
8 db+ /—1 db over the entire frequency band (IF input in the
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Fig. 3. IF return loss versus phase angle of si;.
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Fig. 4. Printed circuit pattern of the 30 GHz mixer.
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Fig. 5. Conversion loss of the 30 GHz mixer.

range 4.5-8 GHz). The deviation from the optimum predicted
for the ideal network is due to: a) losses of the practical circuit
(about 2.5 db); and b) deviations from the optimum loading
over the bandwidth of the mixer. The measured performance of
the mixer is depicted in Fig. 5. As can be seen the conversion
loss over the IF band 4-8 GHz (corresponds to RF band 27-
31 GHz) is 8-9 db, which is almost identical to the simulated
results. The measured VSWR at all the ports in the entire
frequency range is better than 2:1.

IV. CONCLUSION

In this paper we have presented a new generic approach,
which allows a mixer designer to estimate the best achievable
performance of the mixer as well as the loading conditions,
which are necessary to achieve that performance. This ‘can
serve as both performance limit and design guideline. The
new approach was demonstrated by a design example of a X2
subharmonic mixer operating as an upconverter in the 30 GHz
satellite communications barid.
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